Transcranial photobiomodulation for motion sickness mitigation
Cyber- and motion sickness are debilitating for many people, limiting both travel opportunities, and the use of new technologies such as virtual and augmented reality. These forms of sickness are due to nauseogenic sensory mismatc...
ver más
30/06/2026
UNIVERSITY OF GLAS...
150K€
Presupuesto del proyecto: 150K€
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-09-23
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PhotoMod
Duración del proyecto: 21 meses
Fecha Inicio: 2024-09-23
Fecha Fin: 2026-06-30
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cyber- and motion sickness are debilitating for many people, limiting both travel opportunities, and the use of new technologies such as virtual and augmented reality. These forms of sickness are due to nauseogenic sensory mismatch (NSM). Cybersickness affects up to 50% of people use who AR and VR headsets. Motion sickness affects 30% of travellers in all forms of transport, with even more getting sick if they use AR or VR as a passenger. To mitigate the effects of NSM, the PhotoMod project will demonstrate the efficacy of a novel transcranial photobiomodulation (tPBM) technique using near-infrared light. This is delivered by LEDs on the scalp shining invisible light into the brain, focused on the human vestibular network (HVN) to create neural entrainment.
Our novel method extends work on the ERC ViAjeRo project which used transcranial alternating current stimulation to create entrainment in the HVN. We use this to synchronize the phase information of endogenous neural oscillations associated with NSM in the HVN to an external phase stimulus generated by tACS, which mirrors healthy phase information. We have found very significant benefits for NSM with this method. However, tACS has many drawbacks for commercial application. tPBM overcomes all of these as it is: more precise, safer, more comfortable and cheaper. In PhotoMod, we will develop new hardware and software to deliver tPBM in a commercial form, then test it as a mitigation for cybersickness at home and for motion sickness on the road. The final result will be a commercialisable wearable system that can mitigate the effects of cyber and motion sickness across a wide area of applications.