Training network for Next generation cellular screening
Biomedical screening at single-cell and bioparticles level has the potential to transform clinical diagnostics, but the research and development in this field are scattered in different disciplines: biophotonics, micromanipulation...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2021-007516-P
MIcroscopia de CRibado de Alto Contenido para el estudio de...
654K€
Cerrado
EQC2018-004349-P
Adquisición de infraestructura científica para el Servicio d...
396K€
Cerrado
IDSC13-4E-2368
Actualización de equipamiento para análisis celómico
396K€
Cerrado
MIVFC
Development of a multichannel in vivo flow cytometer for the...
50K€
Cerrado
METAflow
Development and validation of the first digital, clinical gr...
4M€
Cerrado
Información proyecto NEXTSCREEN
Duración del proyecto: 47 meses
Fecha Inicio: 2023-12-01
Fecha Fin: 2027-11-30
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Biomedical screening at single-cell and bioparticles level has the potential to transform clinical diagnostics, but the research and development in this field are scattered in different disciplines: biophotonics, micromanipulation, machine learning, in vitro diagnostics, and clinical regulations are traditionally imparted in separate training programs. NEXTSCREEN aims to train and establish a network of researchers with the expertise required for the development of next-generation screening methods, based on automatic imaging and classification of samples moving along a liquid stream. The researchers have the objectives to reduce the cost and complexity of imaging flow cytometry; empower it with novel contrast mechanisms; build high-resolution automatic microscopes at the diffraction limit and beyond; develop real-time data processing tools able to detect and recognize the samples, circumventing the need for manual annotation. Using these technologies they will characterize blood cells and bioparticles, screening large cellular populations, with the goal to identify and characterize cancer biomarkers, in samples derived from liquid biopsies. The ultimate goal is to initiate the development of diagnostics tools, that could be adopted in clinical settings on a large scale, democratizing the use of automatic screening. The project brings together academic and industrial research groups, that are leading the field of imaging flow cytometry, with complementary know-how in high-resolution microscopy, high-precision microfluidics, biotechnologies, and weakly-supervised deep learning, that will facilitate the development of data-driven cells and bioparticle screening.