Towards Seamless climate INFOrmation: merging sub-seasonal and seasonal predicti...
Towards Seamless climate INFOrmation: merging sub-seasonal and seasonal predictioNs to better manage climate-related rIsks Affecting the wine sector
The wine industry is one of the agri-food sectors most highly influenced by climate variability and change at different timescales. In particular, the integration of reliable and timely sub-seasonal to seasonal (S2S) climate infor...
ver más
Descripción del proyecto
The wine industry is one of the agri-food sectors most highly influenced by climate variability and change at different timescales. In particular, the integration of reliable and timely sub-seasonal to seasonal (S2S) climate information in decision-making might help the wine sector to better manage climate-related risks. This explains the recent interest of the wine industry in these sources of climate information. However, one of the challenges that prevent the users from the uptake of climate information is the lack of coherence between the climate predictions from different sources (i.e., forecast systems at sub-seasonal and seasonal time scales). This project will develop a novel methodology to produce coherent S2S seamless climate information for the wine industry. This will involve 1) the understanding of the inconsistencies between the climate prediction sources at S2S timescales that prevent the users from a coherent flow of climate information and 2) the implementation of a methodology that merges sub-seasonal and seasonal predictions by using the knowledge from the physical processes relevant for the climate predictability at both timescales. The new scientific knowledge and methods will be co-developed in collaboration with representative stakeholders. They will work with the fellow to design the climate information that has actual value for the management of the vineyards, wineries, and the strategic planning for the wine market. The methods developed in this project could be further exploited to produce seamless S2S predictions for other socio-economic sectors (e.g., agriculture, health, and energy). This action will be developed at the Barcelona Supercomputing Center (Spain), a well-known institution in the implementation of successful climate services for different socio-economic sectors. Furthermore, a secondment period is projected at Météo-France (France), which is a producing centre of operational sub-seasonal and seasonal predictions.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.