Towards Primate-like Artificial Neural Networks for Visual Object Tracking
The PRINNEVOT project embarks on a mission to bridge the gap between computer vision and the primate visual system in the context of Visual Object Tracking (VOT). VOT is the task of maintaining focus The PRINNEVOT project embarks...
The PRINNEVOT project embarks on a mission to bridge the gap between computer vision and the primate visual system in the context of Visual Object Tracking (VOT). VOT is the task of maintaining focus The PRINNEVOT project embarks on a mission to bridge the gap between computer vision and the primate visual system in the context of Visual Object Tracking (VOT). VOT is the task of maintaining focus on a specific object amidst a dynamic visual environment. Our brains excel at it but replicating this ability in artificial vision systems remains a challenge. This project seeks to develop a novel class of VOT algorithms inspired by the primate visual system's prowess. Despite notable advancements in deep learning-based VOT over the past decade, these algorithms still fall short in emulating the robustness exhibited by primate vision. PRINNEVOT will address this gap through a multi-faceted approach. Firstly, PRINNEVOT will construct a comprehensive reference dataset, investigating both primate behavior and neural recordings. Secondly, among the existing artificial neural network (ANN)-based VOT methodologies, the project aims to identify those that align most closely with the primate brain's mechanisms. Lastly, PRINNEVOT will leverage the discovered inductive biases to develop a new ANN architecture for VOT that closely mirrors the primate's way of continuous object recognition and localization. By merging computer vision and computational neuroscience research, PRINNEVOT aspires to contribute to the development of more accurate and robust VOT algorithms. These algorithms, in alignment with the European Union's pursuit of safer and ethically grounded Artificial Intelligence, promise to enhance human-centric and trustworthy technologies. Furthermore, the project's outcomes will not only benefit AI and computer vision but also advance our understanding of the primate visual system, offering new empirical models of how the brain tracks objects in dynamic visual environments.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.