Towards On-Chip Plasmonic Amplifiers of THz Radiation
Thirty years ago Dyakonov and Shur opened a new field in solid-state physics and electronics - plasma-wave electronics. They theoretically predicted that: i) in nano-transistors, plasma waves may oscillate at THz frequencies far b...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BSICS
Beam Shaping in Complex Systems
254K€
Cerrado
HiNTS
Nonlinear spectroscopy with high power THz waves
247K€
Cerrado
TEC2010-15327
DISEÑO DE DISPOSITIVOS PLASMONICOS NO LINEALES BASADOS EN LA...
34K€
Cerrado
MAT2008-06609-C02-01
PLASMONICA: PROPIEDADES DE SCATTERING Y FENOMENOS NO-LINEALE...
83K€
Cerrado
COMPLEXPLAS
Complex Plasmonics at the Ultimate Limit Single Particle an...
2M€
Cerrado
THZ-PLASMON
Ultra fast control of THz plasmon polariton resonances
1M€
Cerrado
Información proyecto TERAPLASM
Duración del proyecto: 68 meses
Fecha Inicio: 2022-11-23
Fecha Fin: 2028-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Thirty years ago Dyakonov and Shur opened a new field in solid-state physics and electronics - plasma-wave electronics. They theoretically predicted that: i) in nano-transistors, plasma waves may oscillate at THz frequencies far beyond the devices’ cut-off GHz frequencies, ii) THz radiation can be detected by plasma nonlinearities, and iii) the current flow can lead to the generation of THz radiation. The detection part of the plasmonics promise was proven and nowadays THz plasmonic detector arrays are widely used. In the case of emitters, the task turned out to be considerably more complicated. Only recently (PRX 10, 031004, 2020; with my team’s participation) room temperature, current-driven amplification of incoming THz radiation has been demonstrated in an innovative double grating gate structures based on graphene, one of the most promising materials for plasmonics. These break-through results indicate that existing models of plasmonic systems should be reconsidered and that using new 2D materials or their heterojunctions with innovative geometries, may lead Towards on-chip plasmonics amplifiers of THz radiation, which is TERAPLASM’s main objective. The experimental methodology will involve fabrication and THz spectroscopy studies of graphene and alternative-to-graphene unique HgTe and GaN-based systems with a high mobility 2D electron gas. This will allow finding the physical mechanisms responsible for the observed THz plasmonic amplification and select the optimum systems for THz devices. In parallel, theoretical research will develop physical models of THz plasmonic amplification studied in the experimental part of the project. By conducting extensive technological, spectroscopic, and theoretical research TERAPLASM will aim to answer the old basic physics and electronics questions on the feasibility of on-chip plasmonics amplifiers of THz radiation, with important potential applications in wireless telecommunication, biosensing, security, and others.