Towards no-drift sensors with on-chip self-calibration
Sensor drift is a major problem for inertial sensors and limits their usage in autonomous navigation applications. Inertial sensor data is integrated to find the position and drift leads to error accumulation. A common drift suppr...
Sensor drift is a major problem for inertial sensors and limits their usage in autonomous navigation applications. Inertial sensor data is integrated to find the position and drift leads to error accumulation. A common drift suppression approach is temperature calibration, but ovenized state of the art sensors still exhibit drift. Instead of using temperature as a drift indicator, I have pursued a non-conventional approach and measured on-chip stress that directly correlates with drift. The device interacts with its surroundings through the anchors and on-chip stress accurately estimates drift. I am the leading researcher in the stress compensation field, and I have recently demonstrated that MEMS gyroscope drift could be eliminated with stress compensation. My long-term stability results at 2 days of averaging are unrivaled, but the calibration algorithm is not practical. Different from temperature calibration, stress calibrating a device is difficult. I propose a sensor system that would convert my proof of concept work into a practical 0-drift sensor with self-calibration. The proposed system consists of a circular MEMS sensor with multiple (~100) distributed stress sensors and piezoelectric stress transducers, a machine learning supported analytical calibration model, a custom ASIC for superior noise, and an FPGA for system control and self-calibration. If successful, the proposed approach would improve the MEMS gyroscope stability by >100X to the levels of 10-4 – 10-5°/h, enabling error-free, only gravity-referenced inertial navigation. Unlike GPS or camera, inertial navigation works under all weather, light, and location conditions providing a stable reference to navigation algorithms. With further miniaturization, 0-drift sensors could fit into smartphones, and reliable indoor navigation would become a reality. The compact, low-cost sensor could also disrupt the precision inertial market dominated by bulky and expensive fiber-optic and laser sensors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.