Towards Green Hydrogen by Layered Metal Halide Perovskite Heterostructures
Green hydrogen is feedstock, fuel, energy carrier, and storage at the same time, and one of the important cornerstones to decarbonize industrial and economic sectors on the European continent. The proposed action ‘Towards Green Hy...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SolarHyValue
Simultaneous solar hydrogen and value-added product generati...
158K€
Cerrado
PID2021-126098OB-I00
MATERIALES SOSTENIBLES Y AVANZADOS PARA LA FOTOGENERACION Y...
206K€
Cerrado
PID2021-128876OB-I00
MATERIALES ELECTRODICOS AVANZADOS PARA FOTOELECTROLIZADORES...
206K€
Cerrado
FREENERGY
Lead free halide perovskites for the highest efficient solar...
2M€
Cerrado
PCIN-2017-125
PRINCIPIO EN HIDRATACION DE OXIDOS CONDUCTORES MIXTOS
145K€
Cerrado
PRE2018-084883
GENERACION DE ENERGIA, ALMACENAMIENTO DE HIDROGENO EN EL GRA...
93K€
Cerrado
Información proyecto TOGETHER
Duración del proyecto: 31 meses
Fecha Inicio: 2022-06-07
Fecha Fin: 2025-01-15
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Green hydrogen is feedstock, fuel, energy carrier, and storage at the same time, and one of the important cornerstones to decarbonize industrial and economic sectors on the European continent. The proposed action ‘Towards Green Hydrogen by Layered Metal Halide Perovskite Heterostructures - TOGETHER’ will deliver a highly tunable material platform by integrating lateral heterostructures in two-dimensional layered metal halide perovskites (2DLP) to overcome the high exciton binding energy and ultimately enable long-distance charge separation for photocatalytic generation of green hydrogen. The structures developed in TOGETHER will provide a spatially confined directional flow of electrons to the edge of the semiconducting layer in 2DLPs, where they can be extracted by protons to form hydrogen. The unique flexibility of the materials platform architecture will result in a large degree of freedom to tune each step in the photocatalytic cycle to increase the solar-to-fuel conversion efficiency. The formation of lateral heterostructures in 2DLPs will be achieved through tailored consecutive ion exchange, which is a powerful tool to manipulate the composition while maintaining the crystal structure, size, and shape of the parent object. TOGETHER is a highly interdisciplinary effort that builds on cutting-edge research in material science with chemistry, physics, and engineering.