Allostery is a fundamental concept Nature uses to regulate the affinity of a certain substrate to an active site of a protein by binding a ligand to a distant allosteric site. We will design experimental tools to gain an atomistic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PROTEIN DYNAMICS
Conformational dynamics of proteins in the solid state
177K€
Cerrado
PROTEIN DYNAMICS
Conformational Dynamics of Proteins by Solid State NMR
75K€
Cerrado
HIDDENTIMENMR
NMR detected nanosecond to microsecond dynamics for biomolec...
2M€
Cerrado
CTQ2014-54464-R
ESTUDIO DE SISTEMAS BIOLOGICOS Y ATMOSFERICOS POR ESPECTROSC...
125K€
Cerrado
QDHassay
In vitro and In-cell characterization of Quadruplex-duplex h...
166K€
Cerrado
CTQ2017-84371-P
TRANSICIONES ORDEN/DESORDEN EN RECONOCIMIENTO MOLECULAR DE P...
142K€
Cerrado
Información proyecto DYNALLO
Líder del proyecto
University of Zurich
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Allostery is a fundamental concept Nature uses to regulate the affinity of a certain substrate to an active site of a protein by binding a ligand to a distant allosteric site. We will design experimental tools to gain an atomistic understanding of the conformational transitions that give rise to allostery. We will approach the problem from two distinctively different directions. First, we will initiate conformational transitions of proteins that per se are not photoswitchable, by cross-linking two sites of an allosteric protein with a photo-switchable azobenzene-moiety to initiate a conformational transition similar to ligand binding. We will use ultrafast infrared spectroscopy to time-resolve the conformational transition. Second, we will experimentally verify a frequently expressed hypothesis that allosteric and active site communicate by exchange of vibrational energy. To that end, we will design a versatile approach that allows us to locally deposit vibrational energy at essentially any site in a protein (e.g. through pumping of an optical chromophore that undergoes ultrafast internal conversion), and to detect its appearance at any other site by using vibrational transitions as local thermometers. Thereby, we will map out a network of connectivity in a given protein. Both approaches will applied both to one and the same protein family. One concrete example are PDZ domains, which are among the smallest allosteric proteins, and for which the connection between allostery and vibrational energy flow has been made explicit, based on computer simulations. We will eventually test this hypothesis experimentally, and provide the foundation for a description of allostery that is on an equal footing as our current understanding of protein folding.