Toward Perovskite-based Electrically Pumped Laser via Facile Facet Engineering
Beyound traditional III-V laser diodes, solution-processable solid-state lasing (SPSSL) has been in spotlight due to promising versatility and simplified fabrication for integration into various platforms.
Among the classes of op...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
OPTOHYB
Perovskite GaAs hybrid structures towards enhanced optoelec...
171K€
Cerrado
SPUREPER
Building perovskite superlattices by shape-tuning perovskite...
173K€
Cerrado
UNPM13-4E-1662
Espectrofluorímetro para Sólidos con Iones Lantánidos
46K€
Cerrado
MAT2008-06648-C02-01
LASERES ORGANICOS DE ESTADO SOLIDO CON REALIMENTACION DISTRI...
185K€
Cerrado
ENIGMA
ENIneering MAterial properties with advanced laser direct wr...
2M€
Cerrado
Información proyecto PELFE
Duración del proyecto: 29 meses
Fecha Inicio: 2024-03-20
Fecha Fin: 2026-08-31
Líder del proyecto
LINKOPINGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Beyound traditional III-V laser diodes, solution-processable solid-state lasing (SPSSL) has been in spotlight due to promising versatility and simplified fabrication for integration into various platforms.
Among the classes of optical gain media, organic materials, colloidal quantum dots (CQDs), and perovskites have been extensively explored. While organic materials have shown promise, challenges remain in addressing triplet and polaron losses. CQDs, on the other hand, have demonstrated significant progress in suppressing undesirable loss mechanisms. Perovskites, a rising material, present distinct advantages including ease of formation through room-temperature processes and remarkable optical properties (low threshold of ASE and continuous wave lasing).
However, two primary challenges face perovskite implementation. Firstly, there is a notable gap in fundamental studies, specifically in understanding the correlation between auger recombination and optical properties. Secondly, the soft-ionic nature of perovskites poses a challenge for surface shell modification, necessitating the development of suitable treatment methods.
The research aims to achieve electrically pumped amplified spontaneous emission through a comprehensive study of perovskites and the introduction of a novel modification strategy. The project encompasses three objectives: understanding the correlation between compositions and ASE thresholds, maximizing the optical properties of perovskite nanocrystals (PNCs) through surface etching and facet reconstruction, and implementing PNCs into LEDs with a focus on modulating Joule heating and introducing distributed bragg reflectors.
Overall, this research endeavors achieve world’s first electrically pumped ASE using perovskite, offering a promising avenue towards efficient, cost-effective, and widely applicable laser diode technology.