Topological superfluidity in ultracold gas of Dysprosium atoms
In the last decade experimental and theoretical studies in condensed matter demonstrated that materials with strong spin-orbit coupling can host a new state of matter for the electron gas - a topological insulator. More recently t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2015-63058-CIN
MAJORANA STATES IN CONDENSED MATTER: TOWARDS TOPOLOGICAL QUA...
12K€
Cerrado
TOPODY
Exploring topological matter with atomic Dysprosium
2M€
Cerrado
2DDip
Two-dimensional Dipolar Quantum Gases: Fluctuations and Orde...
1M€
Cerrado
ToPIKS
Topological P wave superfluids with Isotopic K mixtureS
161K€
Cerrado
TOP-DOL
Topological physics in tunable optical lattices
158K€
Cerrado
SUPERSOLDYNAF
Quantum states in ultracold fermionic gases in optical latti...
217K€
Cerrado
Información proyecto Topological superfluidity
Duración del proyecto: 25 meses
Fecha Inicio: 2015-03-11
Fecha Fin: 2017-04-30
Líder del proyecto
COLLEGE DE FRANCE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
185K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In the last decade experimental and theoretical studies in condensed matter demonstrated that materials with strong spin-orbit coupling can host a new state of matter for the electron gas - a topological insulator. More recently the concept of topological matter was generalized theoretically to superconducting systems with strong spin-orbit coupling. The topological character manifests itself in the presence of quantum states bound to edges or defects that exhibit exotic physical properties. In topological superconductors, edge states are described as Majorana fermions. These exotic particles - originally predicted in high-energy physics - are non-abelian anyons: their quantum statistics is neither bosonic nor fermionic. Observing Majorana fermions would be the first demonstration of such exotic particles. The field of ultracold atoms seems well suited for the realization of superfluid systems with strong spin-orbit coupling. As shown in recent experimental works, manipulating manipulating atomic internal states with lasers can mimick spin-orbit couplings of strong amplitude. We have constructed at College de france a new experimental setup producing ultracold Dysprosium atomic gases. This atomic species exhibits narrow electronic transitions that should allow one to create such a spin-orbit coupling without substantial heating, which is the main requisite for creating a superfluid state. Combining spin-orbit coupling and strong interactions should lead to the formation of a topological superfluid. We will investigate the structure of quasi-particle excitations of this superfluid, which should exhibit edge modes described as Majorana fermions.