Topological quantum matter with Rydberg atom arrays
"The rapid advancement in quantum technologies for the experimental control of isolated many-body quantum systems calls for the design of new proposals to probe synthetic states of matter in quantum simulators. Topological quantum...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SQSNP
Simulating quantum systems numerically and physically
173K€
Cerrado
AQuS
Analog quantum simulators for many body dynamics
2M€
Cerrado
IJCI-2017-33180
Quantum Simulation of Topological Phases
64K€
Cerrado
YbQuantumSim
Quantum simulation of novel many body phenomena with Ytterbi...
159K€
Cerrado
SING-ATOM
Simulating non-Hermitian many-body topological phases with g...
223K€
Cerrado
RYC2018-025348-I
Experimental quantum simulation of many-body physics with in...
309K€
Cerrado
Información proyecto TOPORYD
Duración del proyecto: 25 meses
Fecha Inicio: 2023-03-27
Fecha Fin: 2025-04-30
Líder del proyecto
UNIVERSITAET INNSBRUCK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
184K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The rapid advancement in quantum technologies for the experimental control of isolated many-body quantum systems calls for the design of new proposals to probe synthetic states of matter in quantum simulators. Topological quantum matter represents the ""holy grail"" for quantum scientists as it stands out for its exotic properties and numerous applications in quantum computation. This research proposal aims to develop a theoretical framework for the systematic construction of topological quantum spin liquids suited for realization in Rydberg atom arrays. Combining the Applicant's expertise in topological phases of many-body systems and the Host's mastery of quantum optics, the goal of this project is to envision novel topologically ordered states of matter and devise their implementation in Rydberg atom-based quantum simulators."