The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-117671GB-I00
SUPERCONDUCTIVIDAD EN LA NANOESCALA: DISPOSITIVOS CUANTICOS...
179K€
Cerrado
HYWIRE
Hybrid Nanowire Devices for Quantum Information Processing
221K€
Cerrado
SUPERLAND
A new SUPERconducting LANDscape: using nanoscale inhomogenei...
2M€
Cerrado
FIS2017-84860-R
DINAMICA, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN NANOESTRUCTURAS...
157K€
Cerrado
HEMs-DAM
Hybrid Epitaxial Materials for Novel Quantum State Detection...
1M€
Cerrado
TOPOSPIN
Scanning tunneling spectroscopy of topological interfaces fo...
264K€
Cerrado
Información proyecto TOCINA
Duración del proyecto: 69 meses
Fecha Inicio: 2019-05-06
Fecha Fin: 2025-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a future topological quantum computer. In a topological quantum bit, information is encoded in Majorana modes, which are topologically protected by a local symmetry and therefore have long coherence times.
In this project we develop a new state of matter -topological crystalline insulator nanowires- in which the topology is defined by the band inversion and the crystal symmetry of the material. Therefore, these topological states should be exceptionally robust. Further, we integrate strong superconductors on these nanowires. These two features together should increase the energy scales of the system compared to current state-of-the-art devices, and therefore lead to stable and electrically-isolated Majorana states.
In this project we develop new crystal growth strategies, which enable to grow out-of-thermodynamic equilibrium structures. We will be the first to employ Molecular Beam Epitaxy (MBE) to precisely tune the SnTe nanowire growth conditions. We use the directionality offered by MBE to shadow-grow superconductors on one nanowire facet. The in-situ ultra-high-vacuum growth of hybrid semiconductor/superconductor devices will result in unprecedented device quality.
Due to the increased energy scales, experiments, which have been unattainable so far, come within reach. We use this new materials platform to demonstrate entanglement of two Majorana modes at the ends of a nanowire. This quantum teleportation is a groundbreaking experiment and is the key of a topological quantum computer.