TOKMAT: Truth, Objectivity, and Knowledge: rethinking the social construction of...
TOKMAT: Truth, Objectivity, and Knowledge: rethinking the social construction of MAThematics
Like all human undertakings, mathematics is pursued, promoted, and developed by socially and culturally situated practitioners immersed in the complex collectivities of their communal, practical, and institutional affiliations. Ho...
Like all human undertakings, mathematics is pursued, promoted, and developed by socially and culturally situated practitioners immersed in the complex collectivities of their communal, practical, and institutional affiliations. However, while few would oppose viewing any other major, artistic, social, political, or religious undertaking as socially constructed, social constructivism in mathematics, specifically regarding the notions of truth and objectivity, remains highly contested among historians and philosophers of science and mathematics. The TOKMAT project uses intuitionism in order to develop a new technique for understanding the concept of truth in mathematics. This technique will be based on a conceptual analysis of the ideas of truth, realism, objectivity, and knowledge in mathematics through the prism of social constructivism. Intuitionism presented an alternate mathematical framework to classical mathematics, that viewed mathematical entities as creations of the mind. As intuitionism acknowledges the social constructivists’ claim that truth is a wholly human construction, it is a springboard towards a wide-reaching rethinking of the main constructivist account of mathematics. As a non-mainstream mathematical school whose ideas are still being discussed, intuitionism is a springboard towards exploring the social organization of scientific knowledge and its impact on our understanding of concepts like truth and objectivity. The project, therefore, brings together the history, sociology and philosophy of mathematics in order to provide new ways of understanding the notions of truth and objectivity in mathematics as shaped by both external and contextual elements. In doing so, this project aspires to contribute to the heady debates on epistemology, philosophy of mathematics, and the social constitution of warranted knowledge.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.