Tight junctions and tissue mechanics as sensors and executers of heart regenerat...
Tight junctions and tissue mechanics as sensors and executers of heart regeneration
One of the most fascinating aspects of salamander regeneration is the level of precision at which restoration of complex structures occurs. How the recovery of form and function is sensed at a cellular level leading to appropriate...
ver más
31/03/2030
KI
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-07
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Tightly Controlled
Duración del proyecto: 65 meses
Fecha Inicio: 2024-10-07
Fecha Fin: 2030-03-31
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
One of the most fascinating aspects of salamander regeneration is the level of precision at which restoration of complex structures occurs. How the recovery of form and function is sensed at a cellular level leading to appropriate termination of regenerative programs remains largely unknown. This is partly due to technical challenges of studying cellular events at a high-resolution during regeneration and establishing a constitutive link between cell behavior, tissue architecture and function. Here, I propose taking an interdisciplinary approach that combines gene editing, deep-tissue imaging, force measurements and spatial -omics to overcome these barriers. My goal is to gain holistic understanding of regeneration by integrating molecular, cellular, mechanical and functional parameters. Specifically, I aim to explore the role of tight junctions and mechanical cues in sensing and relaying macroscale information to adapt cellular events as the regeneration unfolds. We will utilize the newt Pleurodeles waltl and heart regeneration as an ideally suited regeneration context where I recently showed that the injury response by the epithelial-like covering called epicardium and the dedifferentiating cardiomyocytes are closely coordinated to replenish the lost muscle. By combining long term intravital cell tracking, mechanical characterization and ultrasound imaging with tight junction manipulations and mechanical perturbations we will 1) define cell dynamics and regenerative state transitions 2) test whether unique expansion in the tight junction protein Claudin-6 sequence that extends its N-terminus is protective against overproliferation and 3) map the physical properties controlling the termination of regenerative programs. Our results will identify mechanisms underlying the tight control of regeneration and bring new insights into the function of Claudins that are frequently dysregulated in cancer, opening new venues in regenerative medicine and cancer research.