The coherent optomechanical interaction between acoustic and optical waves known as stimulated Brillouin scattering (SBS) can enable ultra-high resolution signal processing and narrow linewidth lasers important for next-generation...
ver más
Descripción del proyecto
The coherent optomechanical interaction between acoustic and optical waves known as stimulated Brillouin scattering (SBS) can enable ultra-high resolution signal processing and narrow linewidth lasers important for next-generation wireless communications, precision sensing, quantum information processing, and many more. But the proliferation of such a unique and powerful technology is currently impeded by fundamental challenges associated with circuit integration of Brillouin optomechanics in a versatile and mass producible material platform such as silicon nitride. The absence of acoustic guiding and the infinitesimal photo-elastic response of standard silicon nitride devices render conventional SBS in this material platform currently out of reach. An innovative approach that breaks with usual paradigms of actuating SBS solely through optical forces in two-dimensional waveguiding circuit is required to overcome these fundamental limitations.
The TRIFFIC project aims to actuate and subsequently functionalize SBS in silicon nitride through three-dimensional (3D) integration of gigahertz acoustic wave sources and waveguides with low loss optical circuits. The two orders of magnitude SBS gain enhancement expected from this project will unlock Brillouin optomechanics in silicon nitride circuits for the first time. Using this novel 3D optomechanical platform, I aim to demonstrate a revolutionary concept of on-demand and programmable optomechanics that will transform the field of RF photonics by providing an advanced signal processor with comprehensive spectral control beyond what is currently possible. Further, I will demonstrate Hz-linewidth integrated SBS lasers in the red and blue visible wavelengths that can be integrated with future portable optical atomic clocks and trapped ion quantum computers.
The ERC Consolidator will be instrumental for me to achieve these ambitious research objectives that will enable the optomechanics revolution in integrated optics.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.