Three dimensional molecular resolution mapping of soft matter liquid interfaces
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NanoRAM
Emerging Nanotools for Soft Matter Characterisation and Mani...
Cerrado
3DIMAGE
3D Imaging Across Lengthscales From Atoms to Grains
2M€
Cerrado
FEMTOPRINT
FEMTOSECOND LASER PRINTER FOR GLASS MICROSYSTEMS WITH NANOSC...
3M€
Cerrado
UNAB10-4E-138
Adquisición de un Microscopio 3D con tecnologia dual (confoc...
100K€
Cerrado
PID2019-104650GB-C22
CERRANDO LA BRECHA ENTRE LOS POLIMEROS SINTETICOS Y LOS BIOP...
85K€
Cerrado
CEMAS
Controlling and Exploring Molecular Systems at the Atomic Sc...
2M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.