Topological insulators (TI) are a novel class of materials with insulating bulk and conducting surface. The conduction of the surface is protected by the topological properties of the bulk, as long as a fundamental symmetry is pre...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TopoRosetta
A Rosetta Stone for Robust Observables of Topological States...
1M€
Cerrado
PID2021-125343NB-I00
CORRELACIONES, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN MATERIALES...
139K€
Cerrado
RTI2018-098452-B-I00
NUEVOS FENOMENOS Y APLICACIONES DE MATERIALES TOPOLOGICOS FU...
73K€
Cerrado
PID2019-109905GB-C21
ROTURA DE SIMETRIA EN SISTEMAS ELECTRONICOS TOPOLOGICOS
52K€
Cerrado
BALLISTOP
Revealing 1D ballistic charge and spin currents in second or...
2M€
Cerrado
PID2020-120614GB-I00
PROPIEDADES ESPECTRALES Y DE TRANSPORTE DE MATERIALES CUANTI...
105K€
Cerrado
Información proyecto STATOPINS
Duración del proyecto: 60 meses
Fecha Inicio: 2015-02-13
Fecha Fin: 2020-02-29
Descripción del proyecto
Topological insulators (TI) are a novel class of materials with insulating bulk and conducting surface. The conduction of the surface is protected by the topological properties of the bulk, as long as a fundamental symmetry is present (for instance time-reversal symmetry). My goal is to investigate to what limits does the protection hold in cases where the protecting symmetry is broken, and only present in statistical sense, after averaging over the disordered ensemble. In a pilot study I showed that materials that are protected by such average symmetry, which I have called statistical topological insulators (STI) significantly extend the classification of topological phases of matter and promise new methods to robustly control the conducting surface properties. I plan to develop a general theory of STI for physically relevant symmetries, describe the observable properties of their protected surface states, invent ways to predict whether materials are expected to be STI, and explore the generalization of STIs to strongly interacting topological phases of matter. I expect that the outcome of my research will significantly extend our understanding of topological phases of matter, and provide new ways to design materials with robust properties.