Designing fair machine learning algorithms is challenging because the training data is often imbalanced and reflects (sometimes subconscious) biases of human annotators, leading to a possible propagation of biases into future deci...
Designing fair machine learning algorithms is challenging because the training data is often imbalanced and reflects (sometimes subconscious) biases of human annotators, leading to a possible propagation of biases into future decision-making. Besides, enforcing fairness usually leads to an inevitable deterioration of accuracy due to restrictions on the space of classifiers. In this project, I will address this challenge by developing oracle bounds of fairness restraints and a Pareto-dominated trade-off between fairness and accuracy using ensemble classifiers with the majority vote, to cancel out not only errors but also biases. I will also develop illegal bias tracing and long-term fairness capturing to comply with anti-subordination lawfully, using learning theory tools including causality and online learning for moral responsibility. The central objective of this proposal is to gain a theoretical understanding of fairness and to design machine learning algorithms that simultaneously improve both fairness and accuracy. The study is essential both for improved scientific understanding of fairness in machine learning models, and for the development of fairer algorithms for the numerous application domains, such as recruitment, criminal judging, or lending. Moreover, the project also takes interdisciplinary knowledge of economics and law into account to avoid fairness concepts in machine learning from being misaligned with their legal counterparts, enlarging the impact of machine learning applications and giving back to the wider community.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.