Theoretical Understanding of Classic Learning Algorithms
Machine learning has evolved from being a relatively isolated discipline to have a disruptive influence on all areas of science, industry and society. Learning algorithms are typically classified into either deep learning or class...
ver más
Descripción del proyecto
Machine learning has evolved from being a relatively isolated discipline to have a disruptive influence on all areas of science, industry and society. Learning algorithms are typically classified into either deep learning or classic learning, where deep learning excels when data and computing resources are abundant, whereas classic algorithms shine when data is scarce. In the TUCLA project, we expand our theoretical understanding of classic machine learning, with a particular emphasis on two of the most important such algorithms, namely Bagging and Boosting. As a result of this study, we shall provide faster learning algorithms that require less training data to make accurate predictions. The project accomplishes this by pursuing several objectives:
1. We will establish a novel learning theoretic framework for proving generalization bounds for learning algorithms. Using the framework, we will design new Boosting algorithms and prove that they make accurate predictions using less training data than what was previously possible. Moreover, we complement these algorithms by generalization lower bounds, proving that no other algorithm can make better use of data.
2. We will design parallel versions of Boosting algorithms, thereby allowing them to be used in combination with more computationally expensive base learning algorithms. We conjecture that success in this direction may lead to Boosting playing a more central role also in deep learning.
3. We will explore applications of the classic Bagging heuristic. Until recently, Bagging was not known to have significant theoretical benefits. However, recent pioneering work by the PI shows that Bagging is an optimal learning algorithm in an important learning setup. Using these recent insights, we will explore theoretical applications of Bagging in other important settings.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.