Theoretical multiphoton spectroscopy for understanding surfaces and interfaces
The project will develop new methods for calculating nonlinear spectroscopic properties, both in the electronic as well as in the vibrational domain. The methods will be used to study molecular interactions at interfaces, allowing...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NOTsoQUANTUM
NOTsoQUANTUM Realistic simulations of polaritonic chemistry
246K€
Cerrado
CSI.interface
A molecular interface science approach Decoding single mole...
1M€
Cerrado
EUR2021-122006
ELECTROLUMISCENCIA DE MOLECULAS AROMATICAS INDIVIDUALES
Cerrado
CTQ2009-08376
AVANCES EN TOPOLOGIA QUIMICO CUANTICA
80K€
Cerrado
QUANTUMCRASS
Towards a fully quantum ab initio treatment of chemical reac...
913K€
Cerrado
DoMInIon
Dynamics of Molecular Interactions with Ions
2M€
Cerrado
Información proyecto SURFSPEC
Líder del proyecto
NORSK POLARINSTITUTT
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The project will develop new methods for calculating nonlinear spectroscopic properties, both in the electronic as well as in the vibrational domain. The methods will be used to study molecular interactions at interfaces, allowing for a direct comparison of experimental observations with theoretical calculations. In order to explore different ways of modeling surface and interface interactions, we will develop three different ab initio methods for calculating these nonlinear molecular properties: 1) Multiscale methods, in which the interface region is partitioned into three different layers. The part involving interface-absorbed molecules will be described by quantum-chemical methods, the closest surrounding part of the system where specific interactions are important will be described by classical, polarizable force fields, and the long-range electrostatic interactions will be described by a polarizable continuum. 2) Periodic-boundary conditions: We will extend a response theory framework recently developed in our group to describe periodic systems using Gaussian basis sets. This will be achieved by deriving the necessary formulas, and interface our response framework to existing periodic-boundary codes. 3) Time-domain methods: Starting from the equation of motion for the reduced single-electron density matrix, we will propagate the electron density and the classical nuclei in time in order to model time-resolved vibrational spectroscopies.
The novelty of the project is in its focus on nonlinear molecular properties, both electronic and vibrational, and the development of computational models for surfaces and interfaces that may help rationalize experimental observations of interface phenomena and molecular adsorption at interfaces. In the application of the methods developed, particular attention will be given to nonlinear electronic and vibrational spectroscopies that selectively probe surfaces and interfaces in a non-invasive manner, such as SFG.