Spectral gap is a fundamental concept in mathematics, physics, and computer science as it governs the exponential rate at which a process converges towards its stationary state. It informs the spectral lines of hydrogen, how we sh...
Spectral gap is a fundamental concept in mathematics, physics, and computer science as it governs the exponential rate at which a process converges towards its stationary state. It informs the spectral lines of hydrogen, how we shuffle cards, the behavior of semiconductors, and web search algorithms. Moreover, some of the most prominent issues of contemporary mathematics, including the Ramanujan-Petersson conjecture and the Yang-Mills mass gap, revolve around spectral gap.
This proposal seeks to investigate the nature of the spectral gap for hyperbolic surfaces and unitary representations of fundamental groups of surfaces. In the former case, the spectral gap occurs in the spectrum of the Laplace-Beltrami operator on the surface, and in the latter, it occurs in the spectrum of a Hecke operator attached to the representation.
The two main motifs of the proposal are ubiquity and optimality. Is the spectral gap ubiquitous? Does it exist for random surfaces and random representations? Is it easy to construct surfaces with a large spectral gap? In what cases can one prove that the spectral gap is close to optimal? The sharpest and most ambitious questions discussed in this proposal combine these two aspects and ask whether objects with (almost) optimal spectral gap appear with high frequency.
My main technical tool is the development of new formulas for integration over representation varieties of fundamental groups of surfaces. These integral formulas are of high independent interest. For example, I propose to establish estimates that extend important results in Voiculescu's Free Probability Theory from the context of free groups, to fundamental groups of closed compact surfaces, and beyond.
The proposal is extremely timely, as it builds on two separate breakthroughs that I have achieved in 2019. I am uniquely placed to tackle the questions of the proposal due to my broad background in geometry, analysis, and representation theory.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.