The RAS pathway is the most frequently activated signaling node in human disease. Despite intensive efforts, effective therapeutic strategies for RAS-driven disease remain daunting. Elucidation of the mechanisms of RAS activation...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KARMA
From the understanding of KRAS RAF membrane dynamics to new...
2M€
Cerrado
RAS:EFFECTORS
RAS superfamily and the interactions with their effectors f...
30K€
Cerrado
PI3KACT
Dynamic regulation of Ras signaling a novel way to attenua...
172K€
Cerrado
BFU2008-01728
CARACTERIZACION MECANISTICA Y FUNCIONAL DE LAS SEÑALES COMPA...
351K€
Cerrado
BFU2017-87244-P
INTERPRETACION TRANSCRIPCIONAL DE SEÑALES RTK
230K€
Cerrado
Información proyecto UB-RASDisease
Duración del proyecto: 60 meses
Fecha Inicio: 2018-03-19
Fecha Fin: 2023-03-31
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The RAS pathway is the most frequently activated signaling node in human disease. Despite intensive efforts, effective therapeutic strategies for RAS-driven disease remain daunting. Elucidation of the mechanisms of RAS activation promises to lead toward novel therapeutic approaches to inhibit RAS activity, and may permit identification of patients who might benefit from RAS pathway inhibitors. Our preliminary studies show that reversible ubiquitylation controls RAS activity by altering its interaction network, thus representing a conceptually novel mechanism of RAS regulation. Our initial steps towards the understanding of the RAS ubiquitylation machinery have shown that positive regulators of RAS ubiquitylation are frequently mutated or down-regulated in RAS-driven diseases, whereas negative regulators are commonly up-regulated. These striking initial results suggest that dysregulation of RAS ubiquitylation may be an alternative mechanism that drives RAS activation in human disease.
Here, we aim to elucidate the role of the ubiquitin system in RAS-driven disease. We will unravel the molecular machinery controlling RAS ubiquitylation and ascertain alterations of the identified machinery in RAS-driven disease. To assess the functional impact of these alterations, we will create genetically modified mouse models and CRISPR-engineered human cell models. We will employ cutting-edge proteomic approaches to determine how disease-associated dysregulation of RAS ubiquitylation perturbs RAS interactions and signalling. Using a synthetic biologic approach, we will obtain insights into mechanisms by which ubiquitylation modulates RAS interactions. It is significant that, in contrast to the majority of known RAS regulators, the ubiquitin enzymes are druggable, which implicates them as promising targets for inhibiting RAS activity. Thus, our studies could lead to new ways of defeating RAS-driven disease.