The role of an expanded family of exported effector kinases in environmental sen...
The role of an expanded family of exported effector kinases in environmental sensing and regulation of virulence in human malaria.
The most severe form of malaria in humans is caused by Plasmodium falciparum. Cytoadhesion of infected red blood cells (iRBCs) to host endothelium and iRBC rigidification are the major contributors to pathology. Cytoadhesion is me...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MALMASQ
Understanding immune evasion by malaria parasites
2M€
Cerrado
PID2019-110810RB-I00
ESTUDIO DE LA GLICOSILACION DE PLASMODIUM FALCIPARUM Y OTRAS...
194K€
Cerrado
SECOMAP
Sexual Commitment of Malaria Parasites Investigation Into t...
195K€
Cerrado
PFSEXOME
Identification of protein kinases and signalling pathways im...
183K€
Cerrado
MalariaEgress
Role of perforin like proteins and phospholipases in malaria...
183K€
Cerrado
PLASMOESCAPE
Monoallelic Gene Expression in Malaria Parasites A Key Mech...
2M€
Cerrado
Información proyecto VirulenceControl
Duración del proyecto: 59 meses
Fecha Inicio: 2023-09-01
Fecha Fin: 2028-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The most severe form of malaria in humans is caused by Plasmodium falciparum. Cytoadhesion of infected red blood cells (iRBCs) to host endothelium and iRBC rigidification are the major contributors to pathology. Cytoadhesion is mediated by transport of a protein called PfEMP1 onto the surface of the iRBC. It prevents clearance of iRBCs in the spleen and promotes parasite survival, but can cause the obstruction of blood vessels leading to pathology. Thus, the parasite has to strike a fine balance between preventing its own clearance through sufficiently strong cytoadhesion and control of rigidity, and killing the host. The paradigm in the field is that the strength of cytoadhesion is dominated by expression of PfEMP1 variants with different affinities for host cell receptors. We now have strong evidence that the parasite can rapidly regulate its cytoadhesive properties using a family of atypical kinases (the FIKK kinases) it exports into the host cell. This gives the parasite a yet unrecognized ability to respond to conditions encountered in the host, such as fever or hypoxia in areas of high parasite sequestration, and influence disease outcome. This is important: Of the 6 human infecting Plasmodium species only P. falciparum exports FIKK kinases into the host cell. As this species is responsible for ~95% of all fatal human malaria cases, it is paramount to understand FIKK- function in pathogenesis. We will use cutting edge approaches to: (1) identify the function of FIKK kinases in controlling cytoadhesion and rigidity in conditions frequently encountered in the human host and determine RBC remodelling in samples from patients. (2) Identify the molecular underpinnings of FIKK function in controlling cytoadhesion and (3) perform a thorough biochemical characterisation of the atypical FIKK kinase family. In summary we aim to answer the paramount question about the functional role and the evolution of the FIKK kinases and the pathogenesis of P. falciparum malaria.