The PomXYZ cluster in the bacterium Myxococcus xanthus: Self-assembly, transloca...
The PomXYZ cluster in the bacterium Myxococcus xanthus: Self-assembly, translocation, and fission of an active protein complex that guides cell division
In my research project I will theoretically model a fundamental process in the cell division of the model bacterium Myxococcus xanthus, namely the process for guiding the machinery for cell division to midcell. In M. xanthus, a cl...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2011-25542
SEGREGACION Y ORGANIZACION DEL CROMOSOMA BACTERIANO: MODELO...
42K€
Cerrado
BFU2008-00911
ARQUITECTURA ESTRUCTURAL Y FUNCIONAL DE NOVEDOSOS FACTORES R...
36K€
Cerrado
BFU2009-07565
LAS PROTEINAS QUINASAS DE TIPO EUCARIOTA DE MYXOCOCCUS XANTH...
145K€
Cerrado
BFU2012-33248
ESTUDIOS SOBRE RUTAS DE TRANSDUCCION DE SEÑALES MEDIADAS POR...
117K€
Cerrado
PGC2018-094635-B-C22
SEÑALIZACION DE ESTRESES EN LA ENVOLTURA CELULAR Y LOS MECAN...
127K€
Cerrado
BacterialBlueprint
Deep single-cell phenotyping to identify governing principle...
2M€
Cerrado
Información proyecto PomXYZ
Duración del proyecto: 26 meses
Fecha Inicio: 2022-07-04
Fecha Fin: 2024-09-30
Descripción del proyecto
In my research project I will theoretically model a fundamental process in the cell division of the model bacterium Myxococcus xanthus, namely the process for guiding the machinery for cell division to midcell. In M. xanthus, a cluster comprised of the proteins PomX, PomY, PomZ self-assembles on the nucleoid surface and in an ATP-consuming reaction cycle translocates to midcell, to guide the cell division machinery there. During cell division the Pom cluster undergoes fission, and the resulting two Pom clusters on the daughter cells again translocate to the respective midcell to induce further cell divisions. I will consider a mesoscopic model which combines spatial dynamics with locally stimulated reactions, to study the formation, translocation, and fission of the Pom cluster. My model is informed, and will be further refined, using experimental results of the group of Lotte Søgaard-Andersen at the MPI for Terrestrial Microbiology, an established collaborator of my supervisor Erwin Frey. I will quantify the constraints imposed on the protein-protein and protein-nucleoid interactions by the tasks the Pom cluster needs to fulfill (self-assembly, translocation, fission), and relate my mesoscopic model both to previously proposed heuristic models on Pom cluster translocation and to (stochastic) reaction-diffusion models. My project will lead to a deeper understanding of how biological systems actively create and maintain order. My mesoscopic model combines spatial dynamics with locally stimulated reactions, which are the two conceptual building blocks needed for spatial organization driven by energy consumption. My model will therefore be applicable also in other instances of biological self-organization, as well as in self-assembly of artificial nanostructures, both of which are active and growing research directions. My project will therefore make my research profile more impactful, which will help me to reach my goal of becoming an independent group leader.