Accurate mapping of tree species and estimation of wood volume and biomass are important assignments of any forest inventory. However, forestry operations currently rely heavily on field data as a basis for estimating its attribut...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SEO-DWARF
Semantic EO Data Web Alert and Retrieval Framework
2M€
Cerrado
RapidAI4EO
RapidAI4EO Advancing the State of the Art for Rapid and Co...
1M€
Cerrado
SEDAL
Statistical Learning for Earth Observation Data Analysis.
2M€
Cerrado
BigEarth
Accurate and Scalable Processing of Big Data in Earth Observ...
1M€
Cerrado
PID2019-109026RB-I00
HERRAMIENTAS DE APRENDIZAJE PROFUNDO PARA LA DETECCION DE NU...
150K€
Cerrado
PTQ2018-009933
TWINTREE: Gemelo digital forestal para clasificar y medir ár...
75K€
Cerrado
Información proyecto forecast
Duración del proyecto: 4 meses
Fecha Inicio: 2019-04-29
Fecha Fin: 2019-08-31
Líder del proyecto
FORA FOREST TECHNOLOGIES
Investigación, desarrollo, innovación, transferencia de tecnología, planificación, programación, cooperación al desarrollo, formación, aseso...
TRL
4-5
| 160K€
Presupuesto del proyecto
71K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Accurate mapping of tree species and estimation of wood volume and biomass are important assignments of any forest inventory. However, forestry operations currently rely heavily on field data as a basis for estimating its attributes. This labour-intensive approach provides limited information and has become a costly bottleneck in completing operations. Today, remote sensing data plays a key role to characterize forests. Generation of accurate models combining a huge bunch of data requires the use of advance AI techniques that provides real time information about woods and its resources.
fora has pioneered high-resolution and timely forest inventory services which combine state-of-the-art remote sensing technologies and deep learning to produce operational forest inventories that help improving the efficiency of forest management activities. Whether LiDAR, RADAR, and/or optical imagery, airborne or satellite, these sensors able to cover a large area for intensive sampling without the disadvantages inherent to labour-intensive ground sampling schemes done by field crews. However, each remote sensing solution has its own pros and cons, mainly to operate as stand-alone service.
FORECAST is at the forefront of how geospatial and remote-sensing data can be harnessed to optimize safety, efficiency and productivity of forest operations. Key to FORECAST innovation is the fora proprietary calibration systems based on a double application of AI algorithms.
FORECAST is the solution for forest managers and wood and paper companies, reducing the field plots to a minimum, while maintaining a high quality of information about the state of the forest at the (local) scale of individual plantations. Whether an organisation is concerned with timber, access to mills, recreation or conservation, achieving long term sustainability with an optimal return is of paramount importance for the design and implementation of effective sustainable forest management plans and forest-related policie