The Microbiota-Root-Shoot Axis in Plant Health and Disease
Since 450 million years, roots of healthy plant are colonised by diverse communities of bacteria, fungi, and oomycetes which are known to extend host functions by protecting roots from disease or by promoting water and nutrient ac...
Since 450 million years, roots of healthy plant are colonised by diverse communities of bacteria, fungi, and oomycetes which are known to extend host functions by protecting roots from disease or by promoting water and nutrient acquisition. More remarkably, recent evidence suggests that bidirectional signalling between belowground microbial commensals and distant aboveground host organs is likely critical for maintaining host-microbe homeostasis and plant health. Reminiscent of the critical role of the microbiota-gut-brain axis for modulating brain functions in animals, we recently obtained evidence supporting the role of the microbiota-root-shoot axis for integrating response to microbes belowground and response to light aboveground. MICROBIOSIS aims at thoroughly dissecting the bi-directional connections between microbial root commensals and shoot developmental processes using Arabidopsis and tomato as model plant systems. By testing the hypothesis that co-evolutionary history between microbial root commensals and their hosts have shaped complex regulatory circuits modulating plant health, MICROBIOSIS aims at unravelling the physiological relevance of the microbiota-root-shoot axis for maintaining host-microbe homeostasis and for integrating multiple stress responses occurring in distant root and shoot organs. Using multi-kingdom synthetic microbial communities, cutting-edge metabolome, microbiome and grafting techniques, as well as several innovative and advanced gnotobiotic plant systems in which below-ground and aboveground organs are physically separated, MICROBIOSIS has the ambition to 1) bridge the gap between functional biology and ecology, 2) decrypt root microbiota-dependant regulatory circuits promoting plant health, and 3) design synthetic multi-kingdom microbial communities with modular functions favouring resistance to multiple aboveground stresses.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.