The Medial Frontal Cortex in Cognitive Control and Decision Making Anatomy Co...
The Medial Frontal Cortex in Cognitive Control and Decision Making Anatomy Connectivity Representations Causal Contributions
Cognitive control enables humans to flexibly adapt their behavior for goal achievement. Despite intensive research we still miss an overarching understanding of cognitive control and its main underlying structure, the posterior me...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-119033GB-I00
SUSCEPTIBILIDAD A LA NEUROMODULACION EN EL CEREBRO SANO: EL...
97K€
Cerrado
PSI2017-82218-P
NEUROMARCADORES ESTRUCTURALES Y FUNCIONALES DE LA ALTA CAPAC...
71K€
Cerrado
PSI2013-45567-P
MECANISMOS NEURALES SUBYACENTES A LOS EFECTOS ESTRATEGICOS Y...
79K€
Cerrado
LEX-MEA
Life EXperience Modulations of Executive function Asymmetrie...
1M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cognitive control enables humans to flexibly adapt their behavior for goal achievement. Despite intensive research we still miss an overarching understanding of cognitive control and its main underlying structure, the posterior medial frontal cortex (pMFC). This is due to insufficient consideration of pMFC neuroanatomy, its subregions and individual variability; low sensitivity of conventional group-level studies; diffuse use of multiple methods and paradigms in disparate studies impeding differentiation of general cognitive-control principles from study idiosyncrasies; sparsity of causal evidence in humans.
This project proposes a radical shift in tackling these issues by two novel approaches:
A) Within-subject multimodal dense sampling and representational modeling considering individual neuroanatomy will provide a fine-grained spatiotemporal mapping of representations of cognitive-control and decision-making variables to connectivity-based pMFC subregions and enable discriminating between competing theories. The rationale is that representations of latent constructs of cognitive control must generalize across tasks and contexts. In multiple sessions behavior, fMRI, EEG, eye movements and autonomic reactions are recorded while participants perform tasks enabling to estimate cognitive control variables (CCV) from behavior and computational models. Representational similarity analysis of CCVs across tasks and modalities in a regression framework will identify signatures of core theoretical components of cognitive control.
B) A novel stimulation method using low-intensity transcranial focused ultrasound (tFUS) noninvasively modulates neuronal activity in deep brain structures with excellent spatial resolution. tFUS combined with EEG and fMRI will causally test the necessity of CCV representations in pMFC and its network for adaptive behavior.
The project will open up new research avenues to address individual differences and pathological changes in cognitive control.