The quantum many-body problem presents us with a baffling variety of phenomena whose mathematical understanding is just leaving infancy. One of the most prominent examples is the behavior of electrons in condensed matter: surprisi...
ver más
Descripción del proyecto
The quantum many-body problem presents us with a baffling variety of phenomena whose mathematical understanding is just leaving infancy. One of the most prominent examples is the behavior of electrons in condensed matter: surprisingly, despite the presence of strong interactions between particles in the microscopic Schroedinger equation, on a macroscopic level one observes almost non-interacting particles. Moreover, some properties even turn out to be universal, i.e., do not depend on the details of the microscopic equation at all. Fermi liquid theory has been phenomenologically developed as an emergent theory to describe these correlation effects in systems of interacting fermionic particles. The first goal of this project is a rigorous derivation of Fermi liquid theory from the Schroedinger equation. My approach will be based on the analysis of high-density scaling limits. While the analysis of scaling limits has been tremendously successful in the last years for bosonic systems, in fermionic systems it has been restricted to the derivation of mean-field theories. Recently I have developed an approximate bosonization for three-dimensional systems which can be rigorously applied in high-density scaling limits. This is one of the few tools that permit an analysis beyond mean-field theory, enabling us now to describe correlations without relying on perturbation theory. The second goal is to show that one-dimensional systems can be analyzed similarly but display a very different behavior called Luttinger liquid, demonstrating that the approach allows to distinguish Fermi from non-Fermi liquids. Thus I will not only provide a unified justification of the non-interacting electron approximation in two and more dimensions, but also pave a new way to and partially resolve the classification problem of the fermionic phase diagram.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.