The Invisible made Visible Far Infrared Spectroscopy in Support of Astrochemistr...
The Invisible made Visible Far Infrared Spectroscopy in Support of Astrochemistry
The interstellar medium (ISM) is filled with highly diluted matter. Chemical processes in the ISM are largely obscured by interstellar dust, prohibiting a detailed view of the chemical evolution of star forming regions. Far-infrar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2011-28738-C02-02
CARACTERIZACION DE ESPECIES MOLECULARES DE INTERES ASTROFISI...
31K€
Cerrado
FJCI-2016-27983
Astrofísica Molecular - Medio interestelar - Astrofísica Inf...
Cerrado
ASTROROT
Unraveling interstellar chemistry with broadband microwave s...
1M€
Cerrado
CHEMPLAN
Astrochemistry and the Origin of Planetary Systems
2M€
Cerrado
eGALISM
Characterizing properties of the interstellar medium to bett...
173K€
Cerrado
CTQ2013-40347-ERC
PREDICCION IN SILICO DE LAS PROPIEDADES FISICOQUIMICAS DEL P...
60K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The interstellar medium (ISM) is filled with highly diluted matter. Chemical processes in the ISM are largely obscured by interstellar dust, prohibiting a detailed view of the chemical evolution of star forming regions. Far-infrared (terahertz; THz) observations of interstellar gas, ice and dust have the potential to penetrate deeply into molecular clouds and reveal the full history of star and planet formation. Accordingly, Herschel Space Telescope, SOFIA and ALMA, present astronomical flagship facilities, promise to open a new era in the THz astronomy. To fully realize this promise it is essential to achieve quantitative experimental THz studies of interstellar dust, ice, and gas. The goal of the outgoing part of this project is to produce laboratory THz spectra of interstellar ice analogues in support of Herschel Space Telescope, SOFIA, ALMA and future facilities. This project will provide the scientific community with an extensive terahertz ice-database, which will allow quantitative studies of the ISM, the possible detection of pre-biotic species and will, therefore, guide future astronomical observations. This part of the project will be carried out within the laboratory group of Prof. Blake in Caltech. The return project will be performed at the FELIX facility (Radboud University Nijmegen, The Netherlands) within Dr. Cuppen (Theoretical Chemistry) and Prof. van der Zande (Molecular and Biophysics) groups and aims at studying in laboratory the molecular mobility in icy layers at the level of individual particles to reveal further details of chemical processes in the solid state in the ISM. Results will be implemented in Molecular Dynamics and Monte Carlo models of Dr. Cuppen, who simulates ice evolution for astronomical relevant timescales, pushing experimental results beyond typical laboratory timescales. This project will contribute to tackle fundamental questions in astrochemistry, such as on the origin and fate of the molecular complexity in the Universe.