The integration of mechanical and chemical signals in neuronal guidance
During the development of the central nervous system (CNS), neurons extend axons through a crowded environment along well-defined pathways to reach their distant targets. It isA start date of 1st June 2018 is being requested to en...
During the development of the central nervous system (CNS), neurons extend axons through a crowded environment along well-defined pathways to reach their distant targets. It isA start date of 1st June 2018 is being requested to enable the PI to complete a number of current commitments and put the necessary arrangements in place to enable an efficient start up phase of the project. evident that attractive and repulsive guidance cues in the tissue provide important biochemical signals to guide growing axons along their paths. This can only be part of the story, however, as it is still not possible to predict axonal growth patterns in vivo. In a recent breakthrough discovery, we provided in vivo evidence that neurons also respond to mechanical cues, such as local tissue stiffness, suggesting that mechanical signals are likely an important missing part of the puzzle. However, mechanically activated signaling pathways are currently poorly understood, and how neurons integrate mechanical and chemical signals to result in proper outgrowth is unknown.
By investigating how mechanical signals control neuronal growth and pathfinding, this proposal will close this comprehension gap. By combining state-of-the-art approaches in physics, engineering and biology, we will, for the first time, identify mechanosensitive molecular mechanisms that regulate neuronal growth and guidance in vitro and in vivo. In particular, we will investigate how mechanotransduction cascades (1) directly modulate axon growth by inducing local changes in cytoskeletal dynamics, and (2) indirectly lead to alterations in axon outgrowth by modulating chemical signalling pathways. Ultimately, we will develop a computational model based on our findings, which will lead to a predictive framework for understanding axon pathfinding in the developing brain.
The proposed research challenges current concepts in developmental biology and is very relevant to many other areas in biology. Our results will not only shed new light on the complex control mechanisms of cellular growth and motility, but could also lead to novel biomedical approaches aimed at facilitating neuronal re-growth and regeneration in the damaged CNS.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.