The impact of chromatin on the evolution and adaptation of eukaryotes
MAIN HYPOTHESIS: Changes in chromatin drive evolution and adaptation in eukaryotes.
MAIN OBJECTIVE: This project aims to understand the impact of epigenetic regulation on the evolution of eukaryotes adapted to extreme environment...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2014-62009-EXP
CANALIZACION DE FENOTIPOS INDUCIDOS AMBIENTALMENTE: TRASLACI...
73K€
Cerrado
InterChromaTE
Interactions between chromatin and transposable elements in...
161K€
Cerrado
EVO-MEIO
Adaptive evolution of meiosis in response to genome and habi...
2M€
Cerrado
SELECTHAPLOID
Testing the Evolutionary Consequences of Haploid Selection i...
2M€
Cerrado
TFtoChromatin
Transcription factor binding as a function of chromatin
175K€
Cerrado
KaryodynEVO
Evolutionary principles of nuclear dynamics and remodelling
2M€
Cerrado
Información proyecto EvoChromoAdapt
Duración del proyecto: 25 meses
Fecha Inicio: 2024-03-12
Fecha Fin: 2026-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
MAIN HYPOTHESIS: Changes in chromatin drive evolution and adaptation in eukaryotes.
MAIN OBJECTIVE: This project aims to understand the impact of epigenetic regulation on the evolution of eukaryotes adapted to extreme environments. To achieve this objective, I will use two approaches involving extremophilic eukaryotes: 1) Identify chromatin signatures to evaluate the potential roles of chromatin in adapting to extreme environments. 2) Use experimental evolution to examine how chromatin affects their capacity for adaptation.
BACKGROUND: My previous research identified genome size reduction as a broad signature of adaptation strategies in extremophilic eukaryotes. In particular, an unanticipated loss of several canonical epigenetic pathways took place during the evolution of extremophilic red algae. I hypothesize that global changes in chromatin features have influenced the adaptation to extreme environments in eukaryotes.
STRATEGIES: I will apply orthogonal strategies to investigate the function of chromatin in environmental adaptability. I will use multi-omics to reveal adaptation signatures based on the comparison of the composition and maps of chromatin features between extremophilic and mesophilic groups. Genetic engineering in model red algae will identify the chromatin machinery that impacts adaptation to extreme environments. Finally, experimental evolution will be used to characterize how the specific chromatin composition of extremophilic red algae impacts adaptation capacity.
IMPACT: This work will establish how chromatin influences the evolution of eukaryotes with direct experimental evidence. It will demonstrate how specific chromatin components impact eukaryotic adaptations and eventually identify some macro-evolutionary trends that participate in the emergence of new eukaryotic lineages.