The hardships for life to become big rethinking hypoxia as an evolutionary dr...
The hardships for life to become big rethinking hypoxia as an evolutionary driver for the rise of complex multicellularity
Why complex life evolved on Earth has puzzled scientists for as long as sufficient oxygen has been deemed vital. Motivated by recent discoveries, however, this project will investigate the dawning paradox that multicellular life r...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ParadOX
Duración del proyecto: 63 meses
Fecha Inicio: 2020-09-08
Fecha Fin: 2025-12-31
Líder del proyecto
LUNDS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Why complex life evolved on Earth has puzzled scientists for as long as sufficient oxygen has been deemed vital. Motivated by recent discoveries, however, this project will investigate the dawning paradox that multicellular life requires low oxygen (hypoxia) internally to thrive in the oxic niche. Central biological mechanisms in animals and plants need protection from oxygen and appears to depend on hypoxic niches. I have previously reconciled geological and medical observations to demonstrate how biological innovation to harness hypoxia would have allowed animals to conquer the previously inaccessible oxic niche. Although life must have invented several solutions to the paradox, the only known is the recent Nobel Prize-awarded mechanism of how cells sense oxygen. Earth history can uniquely evaluate its evolutionary importance through a geologic lens. In ParadOX, I propose to build a transdisciplinary team that provides a novel geobiological evaluation of the role of innovations that harness hypoxia and the processes that led to them.
ParadOX will:
1) Experimentally define
a) Paleozoic oxygenation as kill-mechanism for species with limited access to hypoxia
b) Role of hypoxia for invertebrate longevity and life cycle
2) Theoretically explore
a) Changes in Neoproterozoic shelf area and daily O2 fluctuations as drivers of hypoxia-machineries
b) Co-evolution of hypoxia-machineries in animals and plants
The project uniquely integrates knowledge from geology, biology, medicine, and numerical modeling.
ParadOX’s inquiries groundbreakingly shift our perspective from a simplistic to a dualistic view on the role of oxygen for complex life. Insight to the evolutionary importance and processes that underpin biological innovations to harness hypoxia will advance our view on the rise of multicellularity on Earth, on other planets, and even within us as tumor multicellularity. ParadOX opens a new horizon of investigations into the drivers and the hardships of complex life.