Innovating Works

GLoW

Financiado
The Global Latent Workspace: towards AI models of flexible cognition
Recent advances in deep learning have allowed Artificial Intelligence (AI) to reach human-level performance in many sensory, perceptual, linguistic or cognitive tasks. There is a growing need, however, for novel, brain-inspired co... Recent advances in deep learning have allowed Artificial Intelligence (AI) to reach human-level performance in many sensory, perceptual, linguistic or cognitive tasks. There is a growing need, however, for novel, brain-inspired cognitive architectures to achieve more robust and flexible cognition. The Global Workspace Theory refers to a large-scale system integrating and distributing information among networks of specialized modules to create higher-level forms of cognition and awareness. It is one of the dominant neuroscientific accounts of higher-level brain function. We argue that the time is ripe to consider explicit implementations of this theory using deep learning techniques. We propose a roadmap based on unsupervised neural translation between multiple latent spaces (neural networks trained for distinct tasks, on distinct sensory inputs and/or modalities) to create a unique, amodal global latent workspace (GLW). Sensory inputs that are broadcast in this GLW acquire meaning by connecting them to (or translating them into) the relevant semantic knowledge and representations from language, memory or decision systems: the semantic grounding property. Conversely, language and semantic representations are grounded in the sensory environment via the same broadcast/translation operation. Finally, broadcasting sensory and semantic inputs to the relevant effector domains can create motor affordances and support embodied cognition. Together, the grounding and affordance properties infuse meaning in AI processes, which can then be combined sequentially (via attentional selection) to enable flexible cognitive functions—i.e., System-2 AI. The interdisciplinary project will directly implement the GLW framework in deep learning models of growing complexity, and evaluate their correspondence with brain networks. It will provide an explicit evaluation of the Global Workspace Theory, and push the limits of current deep learning systems towards next-generation AI. ver más
31/08/2028
2M€
Duración del proyecto: 62 meses Fecha Inicio: 2023-06-20
Fecha Fin: 2028-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-06-20
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2022-ADG: ERC ADVANCED GRANTS
Cerrada hace 2 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5