Symmetry structures are key to organizing the complexity of physical systems. In systems described by quantum field theories (QFTs) symmetries group observables, classify phases, determine selection rules and give insight into str...
Symmetry structures are key to organizing the complexity of physical systems. In systems described by quantum field theories (QFTs) symmetries group observables, classify phases, determine selection rules and give insight into strongly coupled dynamics. They are irreplaceable in the study of phenomena such as confinement or duality. Recently, the notion of ‘symmetry’ in quantum field theories was understood to admit a substantial generalization to higher categorical structures such as n-groups and non-invertible symmetries. These realize further non-perturbative data yielding new handles in the study of QFTs. The goal of this project is to analyze such symmetry structures in geometrically engineered QFTs. We initially focus on theories in 4d parametrized by spectral curves and/or special holonomy spaces and aim to geometrize the symmetry representations and fusion structures related to their higher symmetries, building on both past work of the researcher and supervisor. This approach, unlike recent field theoretic developments, does not rely on a Lagrangian description of the QFT and therefore offers insight into confining properties and phase structures of strongly coupled systems. The foremost research objective of this proposal lies in charting these structures for increasingly less supersymmetric theories, including theories with no supersymmetry. All current evidence suggests that such symmetry structures only depend on topological data of the spectral curves and special holonomy space which we aim to trace through supersymmetry breaking deformations. Further research objectives include the study of analogous symmetry structures for superconformal theories in 5d and 6d. Such theories are intrinsically strongly coupled and the geometric methods developed in 4d, guided by field theory, come into their own as there are now no weak-coupling limits to extrapolate from.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.