The Genetic Cellular and Photonic Mechanisms of Avian Structural Colouration
Structural colouration is widespread in nature and generates some of the most stunning visual effects known (e.g. eyespots in a peacock tail). In bird feathers, structural colours are produced by the combination of pigments and pr...
ver más
30/09/2026
ASSOCIACAO BIOPOLI...
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
ASSOCIACAO BIOPOLIS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto EYESPOT
Duración del proyecto: 61 meses
Fecha Inicio: 2021-08-10
Fecha Fin: 2026-09-30
Líder del proyecto
ASSOCIACAO BIOPOLIS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Structural colouration is widespread in nature and generates some of the most stunning visual effects known (e.g. eyespots in a peacock tail). In bird feathers, structural colours are produced by the combination of pigments and precise arrangements of nanostructures that interact both chemically and physically. Currently, almost all published studies on structural colour have focused on the optical and physical aspects of this phenomenon, while the underlying molecular mechanisms remain almost totally unexplored. This proposal seeks to decipher the genetic and cellular basis of structural colours by: 1) exploiting the extraordinary diversity of peacock colour mutants that have emerged from captive breeding, and 2) investigating wild bird species that exhibit structural colouration. My proposal is divided across four multidisciplinary aims that integrate techniques and expertise in the fields of genetics and genomics, cell and molecular biology, and photonics. Aim 1 will elucidate the nanoarchitectural basis of aberrant feather colouration in multiple Mendelian peacock mutants by combining microscopy, spectrophotometry, and chemical analysis of pigment content. Aim 2 will theoretically and experimentally model how abnormalities in the architecture of the photonic lattice result in aberrant light-scattering in these mutants. Aim 3 will combine genetic mapping together with molecular and functional genomic tools for experimental validation and identification of genes controlling the peacock colour phenotypes. Aim 4 will refine our understanding of the evolution of this trait in nature by combining transcriptomic and epigenomic data generated from wild bird species with comparative genomics across the entire avian phylogeny using publicly available genomes. Overall, these studies will significantly expand our understanding of the mechanics and molecular changes underlying a spectacular trait that constitutes a major component of bird phenotypic diversity.