The Evolution and Development of Complex Morphologies
Plant and animal organs display a remarkable diversity of shapes. A major challenge in developmental and evolutionary biology is to understand how this diversity of forms is generated. Recent advances in imaging, computational m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CARNOMORPH
Líder del proyecto
JOHN INNES CENTRE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Plant and animal organs display a remarkable diversity of shapes. A major challenge in developmental and evolutionary biology is to understand how this diversity of forms is generated. Recent advances in imaging, computational modelling and genomics now make it possible to address this challenge effectively for the first time. Leaf development is a particularly tractable system because of its accessibility to imaging and preservation of connectivity during growth. Leaves also display remarkable diversity in shape and form, with perhaps the most complex form being the pitcher-shaped (epiascidiate) leaves of carnivorous plants. This form has evolved four times independently, raising the question of whether its seeming complexity may have arisen through simple modulations in underlying morphogenetic mechanisms. To test this hypothesis, I aim to develop a model system for carnivorous plants based on Utricularia gibba (humped bladderwort), which has the advantage of having one of the smallest genomes known in plants (~2/3 the size of the Arabidopsis genome) and small transparent pitcher-shaped leaves amenable to imaging. I will use this system to define the morphogenetic events underlying the formation of pitcher-shaped leaves and their molecular genetic control. I will also develop and apply computational modelling to explore hypotheses that may account for the development of U. gibba bladders and further test these hypotheses experimentally. In addition, I will investigate the relationship between U. gibba bladder development and species with simpler leaf shapes, such as Arabidopsis, or species where the epiascidiate form has evolved independently. Taken together, these studies should show how developmental rules elucidated in current model systems might be extended and built upon to account for the diversity and complexity of tissue forms, integrating evo-devo approaches with a mechanistic understanding of morphogenesis.