The effect of stellar magnetic activity on protoplanetary discs and exoplanet de...
The effect of stellar magnetic activity on protoplanetary discs and exoplanet detection
"Many cool stars are born as rapid rotators, and therefore with a strong dynamo created magnetic field, which manifests itself as a high level of activity including strong flares and coronal mass ejections. This is the environment...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AYA2016-79425-C3-3-P
ENTENDIENDO LA ESTRUCTURA INTERNA, LA EVOLUCION Y LA VARIABI...
303K€
Cerrado
AYA2017-84390-C2-2-R
JETS ESTELARES, DISCOS Y CAMPOS MAGNETICOS. CIENCIA PARA EL...
167K€
Cerrado
PLANETOGENESIS
Building the next generation of planet formation models pro...
1M€
Cerrado
DiscEvol
Rebuilding the foundations of planet formation: proto-planet...
1M€
Cerrado
OUTFLOWMAGN
Magnetic fields and the outflows during the formation and ev...
2M€
Cerrado
Información proyecto ACTIVITY & PLANETS
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
308K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Many cool stars are born as rapid rotators, and therefore with a strong dynamo created magnetic field, which manifests itself as a high level of activity including strong flares and coronal mass ejections. This is the environment in which planets are formed, and it is therefore unavoidable that this activity has a significant impact on the formation and evolution of planetary systems. The phenomena caused by stellar activity can also have similar effects on stellar brightness and radial velocity as orbiting planets, making it at times difficult to distinguish between planets and activity signatures, especially when using radial velocity searches to find small Earth sized planets. Today we have a unique opportunity to address these points with the new upcoming European and global observational facilities (Atacama Large Millimetre/sub-millimetre Array and Stellar Observations Network Group). In this project we suggest two main lines of investigation:
1) Constructing a freely available database on expected effects of the activity on the detectability of the exoplanets using different methods. We will build a realistic model of activity patterns on different types of stars and using large range of stellar parameters. This model will be used to probe different activity cases, resulting in a database of activity patterns and likelihood of them mimicking different types of exoplanets. This will be crucial for detectability of small, Earth mass, planets using long-term radial velocity measurements with SONG.
2) Studying the effect of the stellar magnetic activity on the protoplanetary discs. By using mid-infrared and sub-millimetre observations of active and non-active young stars with discs a comparison of the disc properties in these two types of stars can be made. We will study the dust
properties in the discs and investigate whether the additional heating from magnetic activity significantly changes the dust constitution, thus affecting the planet formation process."