The design and evaluation of modern fully dynamic data structures
Many real-world data sets change continuously, but their enormous size prohibits frequent re-processing of the whole data. Thus, there is an urgent need for efficient, fully dynamic data structures that maintain properties of the...
ver más
CODY
The Complexity of Dynamic Matrix Problems
1M€
Cerrado
PID2019-104966GB-I00
DATOS TEMPORALES: MINERIA DE DATOS SOBRE SERIES TEMPORALES Y...
126K€
Cerrado
MTM2012-31440
OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GRAN ESCALA. APLI...
35K€
Cerrado
PID2020-118274RB-I00
TECNICAS Y HERRAMIENTAS PARA LA GESTION DE GRAFOS DE CONOCIM...
167K€
Cerrado
MTM2015-65915-R
MATHEMATICAL OPTIMIZATION FOR DATA VISUALIZATION AND DECISIO...
170K€
Cerrado
PRE2020-094828
REDES BAYESIANAS PARA FLUJOS DE DATOS CONTINUOS
99K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Many real-world data sets change continuously, but their enormous size prohibits frequent re-processing of the whole data. Thus, there is an urgent need for efficient, fully dynamic data structures that maintain properties of the data set while supporting fast insertions and deletions. This is especially important for problems in data mining and network analysis, where a data structure often needs to fulfill new additional constraints that are not supported by classic data structures: (1) It should only use sublinear space, even if this leads to some small error in the answers. (2) As data sets frequently contain private information which needs to be protected, it should reveal nothing about individual data points, which is often modeled through differential privacy. Our ambitious goal is to design such groundbreaking new fully dynamic data structures for central problems on graphs and point sets.
Specifically, we will focus on problems with large practical relevance such as subgraph detection, k-core decomposition, and balanced graph partitioning as well as various clustering variants in general metric spaces. For these problems no fully dynamic data structures with small asymptotic running time are known and they have not even been studied in the small-space or differentially-private regime. However, using recent advanced in algorithms research it is now the right time to develop novel techniques to solve these challenging questions.
Thus, the goal of this project is to design algorithms for highly-relevant problems as well as advancing the field of data structures in general by moving it from a narrow focus on asymptotic complexity to a broader set of modern requirements with the goal of bridging the gap that currently exists between theory and practice. As data structures are used by every computer program the impact of this work will be far-reaching. With over 30 years of experience in algorithms research the PI is in the unique position to do so.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.