Testing the Large Scale Limit of Quantum Mechanics
Microscopic systems can be prepared in quantum configurations with no classical counterpart. Such a possibility seems precluded when the 'complexity' of the system grows towards the macroscopic domain: so far we have no evidence o...
Microscopic systems can be prepared in quantum configurations with no classical counterpart. Such a possibility seems precluded when the 'complexity' of the system grows towards the macroscopic domain: so far we have no evidence of non-classical behavior of the macroscopic world. Why is it so? How is quantumness lost as we abandon the microscopic domain? These questions, which remain to date largely unanswered, address interesting and challenging goals of modern research in physics, and serve the overarching goal of this project. TEQ will establish the large-scale limit of quantum mechanics by pursuing a novel research programme that aims at surpassing the current approach based on matter-wave interferometry. Specifically, the TEQ Consortium will
1) Trap an ad hoc manufactured nanocrystal in a radio-frequency ion trap, cooling it by optical parametric feedback, so as to let it operate in ultra-low noise environments.
2) Determine quantitatively all the major sources of decoherence affecting the nanocrystal, and control them experimentally so as to prepare high-quality quantum states of its motional degrees of freedom.
3) Analyse the light scattered by the nanocrystal to test the quantum predictions for the motion of the particle against those of spontaneous collapse and non-standard decoherence mechanisms, and thus pinpoint/rule-out key quantum-spoiling effects, beyond all the studies performed so far.
This roadmap will enable the test of quantum effects for systems whose mass is orders of magnitude larger than that employed in the most successful quantum experiments to date, thus closing the gap with the macroscopic world. Moreover, it will entail significant technological impact: the device that will be built will exhibit exquisite sensitivity to frequency and displacements, thus embodying a significant contribution of explicit technological nature to the design of quantum empowered metrological sensors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.