Terrorist Group Adaptation & Lessons for Counterterrorism
Terrorist groups find ways to adapt to changes in their environment to stay relevant and powerful. This project offers new insights into this phenomenon by developing a more nuanced theoretical strategic framework and using quanti...
Terrorist groups find ways to adapt to changes in their environment to stay relevant and powerful. This project offers new insights into this phenomenon by developing a more nuanced theoretical strategic framework and using quantitative methods to examine how terrorist groups survive, and sometimes thrive, despite efforts to combat them. This is accomplished by integrating political psychology, social movement, and terrorism research, and applying big data analytics and machine learning common in brain sciences, natural sciences, and bioinformatics to identify adaptation patterns in terrorist attack target selection and brutality.First, this project frames terrorism as a recruitment tool for manipulating potential supporters’ psychological needs, like vengeance. Repressive government actions lead to desires for vengeance and thus create opportunities for acts of terrorism specifically attacking the repressive actor to signal a terrorist group’s capability for fulfilling this psychological need. As such, we should observe strategic short-term changes in terrorism following government repression in the data. This is tested using Event Coincidence Analysis, a method for identifying synchronization patterns and trigger rates from one event to another.Second, because terrorist groups can also adapt to changes in counterterrorism, this project proposes two data collection efforts that enable big data analytics to identify adaptation patterns. The first focuses on counterterrorism policies using government reports and covers a global sample of countries. The second creates a novel large-N cross-national counter-terrorist actions dataset using natural language processing machine coding of news articles. Hierarchical clustering analyses will then be used to detect patterns of terrorist group adaptive behaviours and build predictive models that anticipate adaptation. This has implications to improve counterterrorism and make it more proactive, focused, and effective.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.