All information processing in nervous systems relies on spatial and temporal patterns of neural activity. While spatial patterns are dictated by neuroanatomy, the mechanisms that give rise to temporal activity patterns are diverse...
All information processing in nervous systems relies on spatial and temporal patterns of neural activity. While spatial patterns are dictated by neuroanatomy, the mechanisms that give rise to temporal activity patterns are diverse. They range from fast voltage dynamics of single neurons at one end of the spectrum to slow transcriptional and structural changes at the other, but the rules that shape signals at timescales in between milliseconds and minutes are poorly understood. The proposed research aims to uncover mechanisms of temporal information processing at these intermediate timescales, at which temporal patterns are thought to emerge from recurrently connected circuits. Detailed insight into the function of these circuits has been limited by the large number of circuit elements, by the lack of knowledge about their connectivity, and by the impracticability of recording from all circuit elements under naturalistic conditions. In Drosophila melanogaster, these limitations no longer apply. The comparatively low number of neurons, their well-mapped connectivity, and our ability to record and control their activities make mechanistic concepts testable. We will focus on three processes in the brain of Drosophila that unfold over three timescales ranging from milliseconds to minutes: 1) temporal filtering in the motion vision system, 2) sequential sampling of motion information in the lead-up to a perceptual judgement, and 3) temporal integration of distance during locomotion. Patch clamp experiments in the smallest of invertebrate neurons in vivo will allow us to record activity at the highest temporal resolution. We will combine this technique with behavioural, genetic, and imaging experiments to test the roles of individual neurons, their biophysical properties, and their synaptic connections in processing signals at intermediate timescales. The proposed experiments will further our understanding of motion vision, perceptual decision-making, and path integration.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.