Temporal Innovative Model for Imitative Network Generation: a framework to analy...
Temporal Innovative Model for Imitative Network Generation: a framework to analyse temporal networks and generate surrogates
The TIMING project will develop a framework to analyse temporal networks and generate realistic surrogates. Observation of real-world temporal networks given as input will aim at grasping their intricate structure, resulting from...
The TIMING project will develop a framework to analyse temporal networks and generate realistic surrogates. Observation of real-world temporal networks given as input will aim at grasping their intricate structure, resulting from temporal and topological causalities and correlations. I will devise a methodology to mimic these dynamics, using concepts of network science theory as guidelines. The generated synthetic networks will reproduce the fundamental features of the original topologies. This methodology will allow to obtain surrogate temporal networks to replace real data when the latter are not usable or sharable. This is particularly useful for social data, often subject to privacy issues. Moreover, since collected datasets are generally too small to observe interesting effects when simulating dynamical processes (a crucial problem, e.g., in computational epidemiology), it will serve as a tool for data augmentation. TIMING will in fact allow generating temporal networks with a higher number of nodes and a longer time span, based on original patterns extracted from smaller available datasets. TIMING will also provide the possibility to merge different original data, e.g., social interactions collected in different environments, providing a more realistic synthetic portrait of a society. Existing methods to generate realistic temporal graphs are scarce and are mainly based on blind reproduction of an original network, or they focus on specific theoretical aspects, while methods permitting an overall vision are missing. TIMING will fill this gap by combining an emulative algorithm with theoretical inductions, taking into account the mesoscale interplay between time and topology. I will develop the project in the team of Prof. Alain Barrat at CNRS (France), working at the intersection of multiple fields: physics of complex systems, network science, and statistical physics, establishing contacts with social scientists, epidemiologists and neuroscientists.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.