Technology and hardware for neuromorphic computing
Massive adoption of computing in all aspects of human activity has led to unprecedented growth in the amount of data generated. Machine learning has been employed to classify and infer patterns from this abundance of raw data, at...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto TEMPO
Duración del proyecto: 44 meses
Fecha Inicio: 2019-05-23
Fecha Fin: 2023-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Massive adoption of computing in all aspects of human activity has led to unprecedented growth in the amount of data generated. Machine learning has been employed to classify and infer patterns from this abundance of raw data, at various levels of abstraction. Among the algorithms used, brain-inspired, or neuromorphic, computation provides a wide range of classification and/or prediction tools. Additionally, certain implementations come about with a significant promise of energy efficiency: highly optimized Deep Neural Network (DNN) engines, ranging up to the efficiency promise of exploratory Spiking Neural Networks (SNN). Given the slowdown of silicon-only scaling, it is important to extend the roadmap of neuromorphic implementations by leveraging fitting technology innovations. Along these lines, the current project aims to sweep technology options, covering emerging memories and 3D integration, and attempt to pair them with contemporary (DNN) and exploratory (SNN) neuromorphic computing paradigms. The process- and design-compatibility of each technology option will be assessed with respect to established integration practices. Core computational kernels of such DNN/SNN algorithms (e.g. dot-product/integrate-and-fire engines) will be reduced to practice in representative demonstrators.