Teaching Lytic Polysaccharide Monooxygenases to do Cytochrome P450 Catalysis
"Lytic polysaccharide monooxygenases (LPMO) and cytochrome P450 (CYP) are copper- and iron-dependent, respectively,
enzymatic systems that perform regio- and stereospecific oxidation of non-activated hydrocarbons in Nature. To con...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PeroxyZyme
Practical oxyfunctionalisation biocatalysts by engineering m...
3M€
Cerrado
BIO2010-14809
ACEITES A LA CARTA: BIOINGENIERIA DE LA SINTESIS DE MONOESTE...
109K€
Cerrado
BIO2013-43407-R
EVOLUCION DIRIGIDA DE OXIDOREDUCTASAS LIGNINOLITICAS MODERNA...
305K€
Cerrado
BIO2015-68387-R
HIDROLASAS FUNGICAS: ESTUDIOS BIOQUIMICOS, MOLECULARES Y APL...
200K€
Cerrado
RTI2018-094482-J-I00
SINTESIS BIOCATALITICA DE OLIGOFLAVONOIDES HIDROXILADOS
169K€
Cerrado
Información proyecto NewCat
Duración del proyecto: 39 meses
Fecha Inicio: 2022-02-17
Fecha Fin: 2025-05-31
Líder del proyecto
HOGSKOLEN I OSTFOLD
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
3M€
Descripción del proyecto
"Lytic polysaccharide monooxygenases (LPMO) and cytochrome P450 (CYP) are copper- and iron-dependent, respectively,
enzymatic systems that perform regio- and stereospecific oxidation of non-activated hydrocarbons in Nature. To control such
reactions in modern industry and biotechnology is of utmost importance in creating products of value such as secondgeneration
bioethanol and products of value for i.e. the pharmaceutical industry. Due to the major drawbacks of using CYPs,
including their partially membrane bound nature and the requirement of a reductase in combination with reducing agents
such as NAD(P)H to transfer electrons to the active site for oxygen activation, it is highly desirable to develop new type of
catalyst that can perform the same type of reactions. An attractive alternative strategy is to engineer LPMOs to perform CYP
catalysis. LPMOs are small, robust, easy to produce in large scale, and rigid water-soluble proteins with a plethora of
electron donors. The extended, flat LPMO surface, with huge natural sequence variation and thus, likely, mutability, provides
a fantastic scaffold for engineering access to the active site as well as substrate affinity. We propose to use LPMOs
engineered to accommodate typical CYP substrates and immobilize this on solid supports to provide confinement necessary
in bringing the oxygen species together with the C-H bond to be oxidized in a tailored, ""closed"" environment. Moreover, the
rate of LPMO catalysis can be greatly enhanced compared to traditional CYP catalysis by the addition H2O2 in the presence
of low, priming concentrations of an external reductant to achieve efficiency constants (kcat/Km) in the order of 106 M-1s-1,
which is typical for peroxygenases. The proposed ground-breaking research fits excellently well with the work program
""Future and Emerging Technologies"" where the goal is to challenge current thinking."