Task-relevant cognitive maps and their role in spatial decision-making
One of the hallmarks of our cognition is the ability to decide by thinking several steps ahead using an internal cognitive map. In the wild, map-based decisions can enable animals to select a target location based on the amount of...
One of the hallmarks of our cognition is the ability to decide by thinking several steps ahead using an internal cognitive map. In the wild, map-based decisions can enable animals to select a target location based on the amount of food available and the cost of reaching there. But how are such decisions made? For example, how does the brain evaluate a nearby location with a small amount of food versus a distal location with more food? What if the route to the distal location is steep? Such spatial decisions are unique because evaluating a location depends not only on the learned properties of the location but also on inferred properties, like distance, that are estimated from an internal map. However, where or how in the brain are these maps stored and how they enable spatial decision-making remains unknown. Here we will address this question through three specific aims. First, we will test how animals choose among reward sites located at various distances, each dispensing different reward amounts. Next, we will investigate how animals deduce the costs and benefits associated with different trajectories in an environment to make an informed decision. Finally, we will decipher how these internal cognitive maps are formed. These questions will be studied using novel behavior paradigms with rats as the animal model. As rats perform these tasks, simultaneous activity of hundreds of neurons will be recorded from multiple brain regions using novel custom-built devices. To study the internal map formation and the mechanism of map-based decision-making, the neural activity will be analyzed using state-of-the-art machine learning techniques. Finally, the causal role of the corresponding brain regions in spatial decision-making will be tested using optogenetic perturbation experiments. This multi-disciplinary approach will uncover how the brain makes map-based spatial decisions – a phenomenon that remains unexplored but yet of great importance across species.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.