Designer materials are a key research subject in condensed matter physics offering great opportunities to explore emerging new physics and provide pathways to many-body quantum phenomena that are exceedingly difficult to find intr...
ver más
Descripción del proyecto
Designer materials are a key research subject in condensed matter physics offering great opportunities to explore emerging new physics and provide pathways to many-body quantum phenomena that are exceedingly difficult to find intrinsically in isolated materials. The key challenge is to retain the individual quantum ground states in the different components in hybrid materials, while simultaneously tuning the strength of the interactions between them. This requires careful nanofabrication and the complexity of such systems makes further progress difficult. In this proposal, I will use vertical heterostructures of van der Waals (vdW) materials as a flexible platform to engineer elusive quantum states of matter. The general goal of this proposal is the experimental realization of two-dimensional (2D) topological superconductors in vdW heterostructures, and to study the resulting emergent phases of matter. Subsequently, I will use external stimuli (magnetic field, temperature, and chemistry, external gate) to manipulate them. I will couple moir? physics with topological superconductivity and show how the moir? is an external factor that allows additional control over the topologically superconducting phase. Finally, I will combine 2D topological superconductors with ferroelectric materials to fabricate nanoscale reprogrammable topological circuits This will allow controlling topological superconductivity via locally applied electric fields in the heterostructure. I will use molecular beam epitaxy (MBE) to fabricate high-quality 2D vdW heterostructures and probe the properties of the resulting emergent phases using low-temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS). The combination of MBE-STM in ultra-high vacuum (UHV) allows me to fabricate extremely clean, atomically well-defined, chemically tunable heterostructures and gives me unprecedented access to their atomic-scale structure and electronic properties.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.