The past decade has witnessed dramatic progress related to the emergence of different topological polar textures in oxide nanostructures such as vortices, skyrmions, merons, hopfions, among others. These exotic phases are opening...
The past decade has witnessed dramatic progress related to the emergence of different topological polar textures in oxide nanostructures such as vortices, skyrmions, merons, hopfions, among others. These exotic phases are opening new technological perspectives due to their exotic functional properties like negative capacitance, chirality or ultrafast dynamical response. In addition, the fact that these states are metastable and thus non-volatile, allows to consider them as multiweights, that one can exploit in artificial neuromorphic synapses.
The main goal of the collaboration between the researcher and the host group is to perform first-principles based effective atomic potential simulations (retrieving all the structural degrees of freedom) of topological phases interacting with electric pulses from a truly quantum-mechanical point of view to tailor the resulting polar ordering. A key novelty of this proposal and the ambitious objective that it pursues, is to study and characterize, from a fundamental point of view, the phonon modes active in the different topological orderings to figure out the relevant modes to be excited and be able to design concrete pulses that provide a deterministic control of the resulting effect on the polar ordering of the material. Other current approaches to the problem only rely on the coupling between two or three modes with their interactions fitted from DFT. Therefore, a full atomistic view of the problem would be desired. Due to the promising technologically relevant results on the near horizon, a deeper and more advanced theoretical inspection without the omission of atomic degrees of freedom that might be relevant for the description of the material is needed with urgency. This project directly tackles these needs. Although being a theoretical work collaboration with leading experimental groups at UCL and UNIGE will be pursued in order to validate the theoretical model and increase the technology readiness level of the projectver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.