Systematic analyses and rational engineering of fast CO2 fixation pathways in li...
Systematic analyses and rational engineering of fast CO2 fixation pathways in living cells
Biological CO2 fixation is the primary process responsible for biomass and food production and a key player in the atmospheric CO2 balance. Almost all biological CO2 fixation is caried out by a single pathway: the Calvin cycle. De...
see more
31/12/2029
WU
1M€
Project Budget: 1M€
Project leader
WAGENINGEN UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
PARTICIPATION DEPralty
Sin fecha límite de participación.
Financing
granted
El organismo HORIZON EUROPE notifico la concesión del proyecto
The day 2024-09-23
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Project Information FASTFIX
Project duration: 63 months
Date Start: 2024-09-23
End date: 2029-12-31
Project leader
WAGENINGEN UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Project Budget
1M€
participation deadline
Sin fecha límite de participación.
Project description
Biological CO2 fixation is the primary process responsible for biomass and food production and a key player in the atmospheric CO2 balance. Almost all biological CO2 fixation is caried out by a single pathway: the Calvin cycle. Despite the dominance of this pathway in nature it seems relatively inefficient due to high energy costs and poor enzyme kinetics. An exciting option to improve this efficiency, is the exploration of potentially more efficient synthetic CO2 pathways. However, a key challenge to identify promising synthetic CO2 fixation pathways is the limited availability of kinetic data on relevant enzymes. In addition, kinetic data are usually measured in vitro and hence not always representative for the performance in living cells.
In FASTFIX, I will develop and use a novel method to quantify kinetics of enzymes within living cells. I will do this by making the growth rate of engineered Escherichia coli cells directly dependent on the kinetics and levels of the enzymes of interest. By measuring the growth rates and enzyme levels by absolute quantitative proteomics, the in vivo kinetics of the enzymes can be determined.
This approach will be used to generate a complete overview of the kinetics of enzymes involved in promising synthetic CO2 fixation pathways. This will enable an unprecedented systematic analysis of the kinetics of synthetic CO2 fixation pathways.
Based on this analysis I will select the most promising pathway design. Enabled by the in vivo kinetics data I will then employ a novel forward-engineering method to effectively engineer and demonstrate the performance of the full pathway in E. coli.
The realization of a fast, energy-efficient synthetic CO2 fixation pathway in living cells will be a major milestone. The anticipated results will be promising for efficient CO2-based biotechnological production, and in the longer-term may increase agricultural yields and help to more efficiently mitigate humanity’s CO2 footprint.