Systematic Material oriented Approach using Rational design to develop break Th...
Systematic Material oriented Approach using Rational design to develop break Through Catalysts for commercial automotive PEMFC stacks
The present consortium will build a new concept of electrodes based on new catalyst design (ternary alloyed/core shell clusters) deposited on a new high temperature operation efficient support. In order to enhance the fundamental...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SMARTCAT
Systematic, Material-oriented Approach using Rational design...
5M€
Cerrado
CATAPULT
novel CATAlyst structures employing Pt at Ultra Low and zero...
5M€
Cerrado
DeMStack
Understanding the Degradation Mechanisms of a High Temperatu...
3M€
Cerrado
CATHCAT
Novel catalyst materials for the cathode side of MEAs suitab...
3M€
Cerrado
DeMStack
Understanding the Degradation Mechanisms of a High Temperatu...
3M€
Cerrado
MAMA-MEA
Mass Manufacture of MEAs Using High Speed Deposition Process...
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The present consortium will build a new concept of electrodes based on new catalyst design (ternary alloyed/core shell clusters) deposited on a new high temperature operation efficient support. In order to enhance the fundamental understanding and determine the optimal composition and geometry of the clusters, advanced computational techniques will be used in direct combination with electrochemical analysis of the prepared catalysts. The use of deposition by plasma sputtering on alternative non-carbon support materials will ensure the reproducible properties of the catalytic layers. Plasma technology is now a well established, robust, clean, and economical process for thin film technologies. Well-defined chemical synthesis methods will also be used prior for quickly defining the best catalytists.MEA preparation and testing, MEA automated fabrication in view of automotive operation will complete the new concepts of catalysts with a considerably lowered Pt content (below 0.01 mgcm-2 and less up to 0.001 mgcm-2) and supports for delivering a competitive and industrially scalable new design of PEMFC suitable for automotive applications.
SMARTCat will thus address the following objectives:
- Deliver specifications/requirements for reaching the technical goals as a roadmap.
- Design an efficient new catalyst architecture
- Establish a support selection criteria based on physico-chemical characterization and modelling for defining the most suited electrode support to the defined catalytic system
- Assess the robustness regarding operation conditions and fuel cell efficiency
- Enable to automate the MEA production using state of the art (< 100°C) and high temperature membranes (120°C)
- Build efficient short-stack required for competitive automotive fuel cell operation
- Low cost process and low Pt content will dramatically reduce the fuel cell cost, and which will lead to economically suitable fuel cells for automotive application