Synthetic biology for microbial lipids production from lignocellulosic biomass u...
Synthetic biology for microbial lipids production from lignocellulosic biomass using multi functional synthetic consortia
Global transition towards a climate-neutral economy demands for the sustainable use of renewable biological resources. Microbial lipids are potential products of bio-based industries and sustainable alternatives to petroleum-deriv...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SynBioLipid
Duración del proyecto: 46 meses
Fecha Inicio: 2021-04-14
Fecha Fin: 2025-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Global transition towards a climate-neutral economy demands for the sustainable use of renewable biological resources. Microbial lipids are potential products of bio-based industries and sustainable alternatives to petroleum-derived fuels and chemicals. The commercial development of microbial lipids from inexpensive feedstocks such as lignocellulosic biomass is so far limited mainly due to the elevated production costs imposed by physicochemical pre-treatments and extraction of intracellular lipids. In addition, degradation of lignocellulose releases compounds which are toxic for most of the microorganisms. One solution is to construct engineered organisms with improved metabolic capabilities integrating pre-treatment, fermentation, detoxification and secretion of lipids. Hitherto, there is no successful research on an engineered organism which is able to do all these tasks. In fact, efficient transferring large heterologous pathways into one single microorganism is quite challenging and leads to high metabolic burden and less productivity. SynBioLipid will combine my expertise in metabolic modelling and fermentation using mixed microbial communities with the host experience in synthetic biology. It is aimed at using Yarrowia lipolytica, as a model microorganism for microbial lipids production from lignocellulosic biomass by presenting an innovative and original strategy to overcome the challenges associated with expression of large heterologous pathways. I first will generate synthetic microbial consortia comprised specialist strains, and second, will use these communities for the optimized production of microbial lipids. Each specialist strain is engineered to deliver an optimum output for one or more specific tasks. The metabolic network modelling will be integrated with synthetic biology and metabolic engineering to design and build multifunctional synthetic consortia, enabling efficient lipid production from lignocellulose.